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Abstract

Researchers at the Center for Climatic Research (CCR) at the University of Wisconsin-
Madison have revised and calibrated a global volcanic database compiled from more
than 2000 radiocarbon-dated eruptions from the late Pleistocene and Holocene.
The updated database is available online as an appendix to this correspondence5

(http://www.electronic-earth-discuss.net/1/123/2006/eed-1-123-2006-supplement.zip).
We briefly describe the database, suggest some potential applications, and invite other
researchers in the geologic and atmospheric sciences to both use and help refine the
archive by incorporating additional data as it becomes available.

1 Introduction10

Volcanic eruptions inject SO2 into the atmosphere where it oxidizes to H2SO4. These
aerosolized droplets of sulfuric acid scatter incoming solar radiation. Although complex,
the net effect of these aerosols is increased albedo, which cools the planet (Robock,
2000). The cooling produced by individual eruptions may last only a few years, but
the cumulative effect of multiple eruptions may significantly modulate the more grad-15

ual climatic oscillations driven by orbital forcing (Bryson, 1988; Bryson and Goodman,
1980; Hammer et al., 1980; Robock, 2000; Zielinski, 2000). Conversely, these low
frequency oscillations in the planet’s orbital geometry force the accumulation of con-
tinental glaciers. Several recent studies on the Pacific coast of North America and
the North Atlantic (Jellinek et al., 2004; Maclennan et al., 2002; Mortensen et al.,20

2005; Sigvaldason et al., 1992; Slater et al., 1998) have linked significant increases
in volcanism to the isostatic rebound resulting from the ablation of these ice masses.
Additionally, several general circulation model (GCM) experiments also suggest that
hemispheric cooling of significant amplitude and duration can be expected from the
combined effects of multiple eruptions (Kirchner and Graf, 1995; Pollack et al., 1993).25

Other factors, including secular variation in solar output (Bond et al., 2001), may have
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contributed to high frequency temperature oscillations during the Holocene as well.
Nearly thirty years ago researchers at the Center for Climatic Research compiled an

archive of radiocarbon-dated volcanic eruptions to track variation in global volcanism
during the Holocene and late Pleistocene (Bryson and Goodman, 1980; Bryson and
Bryson, 1998). The goal was to estimate changes in the rate of global eruptions5

and to begin to evaluate the role of volcanism in Holocene climate change. An early
iteration of the database was made available through the NOAA Paleoclimate archive
in the 1990s: ftp://ftp.ncdc.noaa.gov/pub/data/paleo/climate forcing/bryson1988/. This
uncalibrated database comprised about 1000 eruptions. The current record has
been enlarged and revised and now contains 2021 entries. The following briefly10

describes the database, the calibration method used, and presents two indices
calculated from the data. The new database is available as an online appendix
(http://www.electronic-earth-discuss.net/1/123/2006/eed-1-123-2006-supplement.zip)
to this correspondence in Excel format. It provides the coordinates, countries, probable
source eruption, radiocarbon age and standard deviation, and calibrated ranges at 6815

and 95 percent probabilities, as well as notes and references.
The product should be of interest to researchers examining possible periodicities in

the rates of regional or global volcanism (Jupp et al., 2004), those interested in the
dynamics of glacial loading and volcanism, and climate scientists interested in high fre-
quency variations driven by volcanic aerosols. We have worked to keep the database20

current, incorporating new dates as they became available, but new research (espe-
cially marine coring projects) has the potential to significantly increase the number of
eruptions dated to the late Quaternary.

2 The database

Some researchers have argued that a representative record of global volcanism cannot25

be derived from terrestrial sediments because of the irregular preservation and recov-
ery of ejecta (Zielinski et al., 1996). We acknowledge these reservations but argue
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that the geological record is important, because it may preserve a component of the
global volcanic signal that is less evident in ice cores due to the irregular advection of
volcanic aerosols. Greenland’s volcanic record, for example, is known to be strongly in-
fluenced by Icelandic volcanoes (Hammer et al., 1980). Although significant inter-pole
correspondence has been demonstrated (Bay et al., 2006), high latitude records have5

a general bias toward their respective hemispheres (Robock, 2000). The geological in-
dex presented here is relatively unbiased; eruptions in the geological database range
from 54◦ S to 79◦ N latitudes. Volcanoes located north of 45◦ N comprise only 24% of
the record, while fully 39% are from the tropics. Bay et al. (2004) found significant
correspondence between a volcanic index calculated from our geological database10

(described below) and the rates of volcanic dust accretion in ice cores from both poles,
suggesting that the index may track the global signal in both records.

Simkin and Siebert have compiled an extensive general volcanic database (1994),
but it is primarily historic. Out of the total 9112 eruptions reported, 3599 erupted after
1900 (39%), and only 27% erupted before AD 1500. The most recent version (online at15

http://www.volcano.si.edu/world/) includes 1297 radiocarbon-dated eruptions of which
338 are calibrated. We have compared our database with the Smithsonian archive
for correspondence and redundancy but have not incorporated any prehistoric dates
from methods other than radiocarbon. We have culled all duplicate dates so that single
eruptions are not recorded more than once.20

According to Simkin and Siebert, eruptions in remote regions were not consis-
tently reported prior to about 1950. Thus a historical survey of global eruptions re-
liable enough to calculate a rate spans only the last 50 years (Simkin and Siebert,
1994). Their database lists nearly 2000 eruptions between 1950 and 1994 (Siebert
and Simkin, 2002). However, according to the volcanic explosivity index (VEI) that25

they provide, most of these were minor eruptions producing only small quantities of
ejecta and aerosols. Ancient eruptions of this magnitude probably left little trace in the
geological or cryological records. Comparison with the Smithsonian historical archive
suggests that our geological database is apt to be a very small sample of the total
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number of eruptions during the last 40 000 years, as Zielinski et al. (1996) suggest. Yet
it may be more representative of the most explosive eruptions, which produced a large
volume of well-dispersed ejecta and inject SO2 into the stratosphere where it can be
broadly circulated.

Temporal resolution in a radiocarbon database is likewise limited by the errors asso-5

ciated with the age estimation and calibration. We used the batch calibration function
in the Cologne Radiocarbon Calibration & Paleoclimate Research Package, or Cal-
Pal. We chose this program because it calculates a summed probability distribution
of the calibrated 14C-ages, along with a single weighted intercept. This produces a
highly robust calibrated value for each conventional date, with associated one and two-10

sigma distributions instead of multiple intercepts. Details of this method are given by
Weninger (1986). Further information and a comparison with other calibration tech-
niques are provided in the literature library on the CalPal site (http://www.calpal.de/).
We have included the radiocarbon ages and standard deviations as columns in the
database if more conventional calibration methods are preferred.15

The database has been incorporated into the CalPal program as part of its paleo-
climate archive. CalPal allows interactive plotting of the data against a range of other
paleoclimate proxies including SO2 records from the GRIP, NGRIP, and Vostok cores.

Our version of the database is an Excel workbook with three worksheets. The first
consists of columns with the name of the source followed by its geographic region,20

latitude, longitude, and elevation when available. We have assigned a number to each
entry to aid sorting. The radiocarbon age and standard deviation is followed by a cali-
brated single weighted intercept and its one sigma range. A two sigma calibrated age
range is provided in a separate column followed by the date’s laboratory sample num-
ber, abbreviated references, and comments. The second sheet has the same format25

but consists of those dates that could not be calibrated because no standard deviations
were reported. The third worksheet lists the complete references alphabetically.
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3 Index of the volcanic rate

We have calculated two indices after detrending to control for the effects of erosion
and recovery of the older material. The earliest version of the index fitted a power law
curve to the data to remove the trend due to preservation bias; the new index fits a
serpentine curve (given by the Cartesian equation y=abx/x2+a2; Beyer, 1987:225),5

because it matches both the decay due to erosion and the fall off in radiocarbon dates
on recent and historic eruptions (Fig. 1).

The departure from the curve (i.e. variance in the residuals) is expressed as a gen-
eral index of the rate of volcanism over the past 14 000 years in Fig. 2. Here we graph
both the summed probability under the curve and a frequency distribution using century10

bins.
A period of apparent increased volcanism associated with Northern Hemisphere

deglaciation is evident in the index as well as in the SO2 record in the GRIP core
(Zielinski et al., 1996; Zielinski and Mershon, 1997). Variation in the indices appears
to correspond with some well described climatic fluctuations in the Holocene, including15

the 4.1 K event, the Medieval Warm Period, and the Little Ice Age, suggesting that vari-
ation in global volcanism may have contributed to these events, consistent with other
research (Hammer et al., 1980; Lamb, 1970; Robock, 2000; Robock and Free, 1996;
Zielinski, 2000).

The index has been systematically incorporated into macrophysical climate models20

(Bryson and Bryson, 2000) to simulate late Quaternary variation due to volcanism. In
the macrophysical models the variation in atmospheric albedo due to volcanism is es-
timated by correlating a record of measured optical depth with the record of historic
eruptions for the same period of the 19th and 20th centuries (Goodman, 1978, 1984).
A recent study (Ruter et al., 2004) compared a set of compiled paleoclimate studies25

from the American tropics with simulations from four separate GCMs and the macro-
physical model. The macrophysical retrodictions compared favorably with the compiled
proxies and showed greater accuracy than most GCMs (all of which lacked a volcanic
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component). The effects of single and multiple eruptions at various spatial and regional
scales have been the focus of several GCM experiments. However, with few recent ex-
ceptions (e.g. Mann et al., 2005), simulations of longer Holocene climate sequences
typically omit volcanism. We note that just as some GCMs have been improved by the
incorporation of coupled ocean and vegetation feedbacks, the addition of volcanic mod-5

ulation could further refine those GCMs attempting to simulate high-frequency climatic
variation during the late Quaternary.

Despite the development of various volcanic indices (Goodman, 1984; Lamb, 1977,
1983; Mitchell, 1970; Robock and Free, 1995, 1996; Sato et al., 1993), significant
discrepancies remain between the various methods used to estimate both atmospheric10

optical depth and the proportion of its variation that can be explained by fluctuation in
historic volcanism (Robock, 2000). This problem will not be easily resolved.

In conclusion, we know that this geologic archive is quite small given the general
level of volcanism. We have reservations as to the representativeness of the record
in its current form and realize that polar ice holds the best archive of paleovolcanism.15

However current research involving the recovery and dating of volcanic ejecta from
terrestrial contexts and marine cores (particularly those from the tropical Pacific) offer
valuable new sources of additional data that should be incorporated. We hope that
with further dissemination and augmentation this archive may develop into a useful
complementary proxy for late Quaternary fluctuations in global volcanism.20
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no standard deviations were reported. The third worksheet lists the complete references 

alphabetically. 

3 Index of the volcanic rate 

 We have calculated two indices after detrending to control for the effects of erosion and 

recovery of the older material. The earliest version of the index fitted a power law curve to the 

data to remove the trend due to preservation bias; the new index fits a serpentine curve (given by 

the Cartesian equation y = abx/x2 + a2 (Beyer 1987:225)), because it matches both the decay due 

to erosion and the fall off in radiocarbon dates on recent and historic eruptions (Figure 1).  
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Figure 1 A frequency distribution of the calibrated ages with the fitted serpentine curve used to 
detrend the data.  The residual variance (Figure 2) is the volcanicity index. 

 7

Fig. 1. A frequency distribution of the calibrated ages with the fitted serpentine curve used to
detrend the data. The residual variance (Fig. 2) is the volcanicity index.
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The departure from the curve (i.e. variance in the residuals) is expressed as a general index of the 

rate of volcanism over the past 14,000 years in Figure 2. Here we graph both the summed 

probability under the curve and a frequency distribution using century bins. 
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Figure 2 Two detrended indices for late Quaternary volcanism from the database. The summed 
probability under the curve (VI PROB) is in blue, and a frequency distribution using century bins 
(VI COUNT) in red.  Selected climatic periods and events including the Little Ice Age (LIA) and the 
Medieval Warm Period (MWP) are indicated. 

 A period of apparent increased volcanism associated with Northern Hemisphere 

deglaciation is evident in the index as well as in the SO2 record in the GRIP core (Zielinski, et al. 

1996, Zielinski and Mershon 1997). Variation in the indices appears to correspond with some 

well described climatic fluctuations in the Holocene, including the 4.1 K event, the Medieval 

Warm Period, and the Little Ice Age, suggesting that variation in global volcanism may have 

 8

Fig. 2. Two detrended indices for late Quaternary volcanism from the database. The summed
probability under the curve (VI PROB) is in blue, and a frequency distribution using century bins
(VI COUNT) in red. Selected climatic periods and events including the Little Ice Age (LIA) and
the Medieval Warm Period (MWP) are indicated.
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