Paleodepth variations on the Eratosthenes Seamount (Eastern Mediterranean): sea-level changes or subsidence?

S. Spezzaferri\(^1\) and F. Tamburini\(^2\)

\(^1\)Department of Geosciences, University of Fribourg, Ch du Musée 7, 1700, Fribourg, Switzerland
\(^2\)Institute of Geology, ETH-Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland

Received: 21 August 2007 – Accepted: 6 September 2007 – Published: 7 September 2007
Correspondence to: S. Spezzaferri (silvia-spezzaferri@unifr.ch)
Abstract

The Eratosthenes Seamount (Eastern Mediterranean) is interpreted as a crustal block in process of break up in response to subduction and incipient collision of the African and Eurasian Plates. Subsidence is considered to be the mechanism triggering the Messinian to Pleistocene water deepening above this unique structure. However, the application of a recently developed transfer equation of depth range distribution of benthic foraminifera indicates that sea-level changes may also have played a role, although it was generally minor. In particular, we suggest that across the Miocene/Pliocene boundary and during the Pliocene-Pleistocene, the eustatic signal is frequently coupled with uplifts and subsidence. The uplift of Cyprus across the Pliocene-Pleistocene transition is clearly recorded in the paleodepth curve. Micropaleontological studies and the use of this transfer equation based on the distribution of benthic foraminifera proves to be useful when studying the paleodepth history of complex sites, where tectonic and eustatic signals combine. We also show that marginal seas record global sea-level changes that can be identified even in tectonically active settings.

1 Introduction

The Eratosthenes Seamount, located in the Eastern Mediterranean Sea (Fig. 1), is interpreted as a crustal continental block in the process of break up in response to subduction and incipient collision of the African and Eurasian Plates. It represents an important early collisional stage in the general process of plate suturing and mountain building, which is generally not well preserved in the fossil record and has no modern analogue (Robertson et al., 1996; Whiting, 1998).

A transect of four ODP Sites (Site 965 to 968) was drilled on the Eratosthenes Seamount during ODP Leg 160. Data from these locations allowed a better interpretation of the sedimentary and tectonic history of the seamount from the Mesozoic to the present-day. Results demonstrated that this structure was emerged during the
“Messinian Salinity Crisis”, and rapidly subsided and broke up from the late Miocene to the early Pliocene as result of collision with the Cyprus active margin at the north. Initial impingement took place at about 5 Ma and was followed by intense uplift of Cyprus at about 2 Ma (Robertson et al. 1996; Robertson, 1998a). Seismic evidence also suggests that the Eratosthenes Plateau is presently tectonically active (Robertson et al., 1996).

A preliminary study of the benthic fauna recovered at ODP Hole 967A, drilled at the base of the Northern slope of the seamount, revealed drastic changes in the water depth. However, due to its geologic history, it is currently accepted that the evolution of this structure is related to tectonic changes and that eustatic sea-level variations played a secondary or no role with respect to tectonic-related subsidence in the water deepening above the seamount (e.g., Robertson et al. 1996; Whiting, 1998). Substantial differences in the trend of the sea-level curve of Haq et al. (1988) and the subsidence curves from the Cretaceous to the Pleistocene presented in Whiting (1998) also corroborate this assumption.

The aim of this study is to test whether tectonics, subsidence, or eustasy, or a combination of them triggered the water depth variations above the seamount. We apply the method recently developed by Hohenegger (2005) based on the geometric mean of depth ranges of benthic foraminifera to evaluate variation in paleodepths. The Eratosthenes Seamount has been chosen because it represents an ideal setting where we can test the use of this transfer function in comparison with oxygen stable isotope data. Here, in fact, tectonic-related subsidence may have combined with global sea level changes.

2 ODP Site 967A

ODP Hole 967A was drilled on a small ridge near the base of the lower northern slope of the seamount (3404.098′ N; 32°43.523′ E) in a water depth of 2553 mbsl (Fig. 1). Sixteen cores were retrieved with a total core recovery of 95.8%. The recovered Pliocene-
Pleistocene sapropel-bearing sequence is approximately 100 m thick. An about 2 m thick sequence of calcareous clay underlying these sediments contains abundant ostracods and shallow water benthic foraminifera from the Messinian “Lago-Mare” facies (Emeis et al., 1996; Spezzaferri et al., 1998). The recovered Messinian-Pleistocene sedimentary sequence is almost complete at this hole (Spezzaferri et al., 1998). The only exception is an about 49 ka long hiatus coincident with the Pliocene-Pleistocene transition (Emeis et al., 1996).

3 Materials and methods

The detailed biostratigraphy of ODP Hole 967A is retained as reported in Emeis et al. (1996) and Spezzaferri et al. (1998). Seventy-nine samples were qualitatively investigated for their benthic foraminiferal content. Three samples per section were taken across the Miocene/Pliocene boundary and 1 to 2 samples per section in the remaining Pliocene to Pleistocene section. The transfer equation developed in Hohenegger (2005) and tested in Spezzaferri et al. (2004) was applied to the depth range distribution of benthic foraminifera to estimate the paleodepth for each sample:

\[
x = \left\{ \frac{k}{\sum_{j=1}^{k} \left[\frac{(x_{j,\text{min}} x_{j,\text{max}})^{1/2} (x_{j,\text{min}} - x_{j,\text{max}})}{1/ (x_{j,\text{min}} - x_{j,\text{max}})} \right]} \right\}
\]

Where: \(x=\)paleodepth, \(x_{j,\text{min}} = \) shallower depth range for each benthic species, \(x_{j,\text{max}} = \) deeper depth range for each benthic species, \(k= \) number of species. Depth ranges of the species identified in ODP Hole 967A are from the literature (e.g. Jones, 1994; Sgarrella and Moncharmont-Zei, 1993; Spezzaferri et al. 2004; Hohenegger, 2005).

In particular, the depth ranges used in Hohenegger (2005) were revised according to new data published in specialised monographs on benthic foraminiferal distribution in the Mediterranean Sea that allowed to extend the lower and upper limits of some species (Meric et al., 2004; Rasmussen et al., 2005).
Since post-mortem mixing of species caused by transport, reworking and sediment mixing may bias the paleodepth estimation, the elimination of some species living in water depth not consistent with the assemblage was necessary to reduce the influence of non-overlapping paleodepth signals (Hohenegger, 2005).

The paleodepth confidence limit in each sample was also calculated (Fig. 2a). Especially in the Pleistocene part of the sequence, the broad range of the confidence limit is due to the recovery of a lower number of different species compared to other intervals. In this case, the broad range is an effect of the approach used by the paleodepth transfer function, which takes into consideration only the presence of the species and not the all the environmental parameters (e.g. temperature, nature of the substrate, etc.) which control the species depth distribution. However, paleodepth estimation calculated with this method is reliable, as it depends on a geometric mean of gradient values. This is clearly shown by the minimal difference between the real depth of the Site 967 (2553 m) and the estimated depth of the upper part of the studied sequence (2549.5 m).

The paleodepth curve is plotted against the age model obtained using the astronomically calibrated ages of bioevents as in Emeis et al. (1996). Depth ranges for each species are shown in Table 1. The complete range chart showing the distribution of benthic foraminifera in the sediments from the Eratosthenes Seamount and their depth ranges is available as Supplementary Data.

4 Results

The paleodepth curve obtained for the Eratosthenes Seamount (Fig. 2b) shows three major drastic variations. (1) Very low paleodepth values (less than 20 m) are observed in the Messinian part of the sedimentary sequence. (2) Values further increase rapidly in the early Pliocene (about 5.1 Ma). The paleodepth curve shows only minor fluctuations throughout most of the Pliocene with values from about 200 m and never exceeding 712 m. (3) In the Pleistocene a strong deepening from 456 m to 1060 is observed...
between 1.7 and 1.5 Ma. The deepening trend continues upward with values reaching the present depth of about 2549.5 m.

5 Discussion

5.1 Sea-level changes in the Mediterranean Sea

The paleogeography and paleoceanography of the Mediterranean sea experienced drastic changes during the latest Miocene (uppermost part of the Messinian stage), when it became temporarily isolated from the Atlantic Ocean as result of the interaction of plate motion and glacio-eustatic sea-level changes (e.g. Spezzaferri et al., 1998; McKenzie et al., 1999). This isolation resulted in a “salinity crisis” of the Mediterranean, whereby the world ocean lost 6‰ of its salinity and about one million cubic kilometres of evaporites were deposited on the floor of the deep Mediterranean Basin (e.g., Hsu et al., 1973; Ryan, 1973). After the re-establishment of open marine conditions in the earliest Pliocene at 5.332 Ma (van der Laan, 2006), the Mediterranean Basin reached its actual configuration through additional eustatic changes and local tectonic processes, which influenced the geological setting and the sedimentation during the Pliocene and Pleistocene (Robertson, 1998a).

McKenzie et al. (1999) demonstrated that a global sea level rise at 5.33 Ma ended the “salinity crisis” in the Mediterranean and forced the backstepping of the carbonate platforms in the Bahamas, implying a strong eustatic influence at least in this time. The initial flood was followed by the establishment of a shallow connection to the Atlantic (initial formation of the Strait of Gibraltar) becoming efficient coincident with the Zone MPl1/MPl2 boundary in the lower Pliocene. Recent studies have linked the basal Pliocene flooding to a tectonic event rather than a global eustatic sea level rise (e.g., Duggen et al, 2005; Van der Laan et al., 2006).

To identify possible relationships between paleodepth variation on the Eratosthenes Seamount, sea level changes and/or tectonic events, the paleodepth curve was com-
pared with the stack of benthic δ^{18}O records (Fig. 2c) from 57 globally distributed sites, but mostly in the Atlantic Ocean, aligned by an automated graphic correlation algorithm (Lisieki and Raymo, 2005). The relationship between the composite oxygen isotope record and the eustatic episodes consistent with the geological record of ice-sheets evolution was previously demonstrated by Abreu and Haddad (1998) and Abreu and Anderson (1999), among others. In particular, negative excursions of the δ^{18}O values should correspond to high sea-level stands and positive excursions to low sea-level stands.

5.1.1 Overall trends

Comparison between the paleodepth curve and the composite isotope record shows an opposite trend of the two curves throughout the investigated interval. The composite isotope record shows the well-known cooling trend from 5.5 Ma to present, indicating also a trend towards overall lower sea level. On the other hand, the paleodepth curve observed at the Eratosthenes Seamount indicates deepening in the seawater (Figs. 2b–c). Since several lines of evidence confirm that rapid subsidence took place on the Eratosthenes Seamount from the early Pliocene, the tectonic history of the area accounts for the discrepancy observed between the sea level and the paleodepth curves.

However, the comparison of these records in selected time slices (latest Messinian-lowermost Pliocene; remaining part of the Pliocene, Pleistocene) shows that single excursions in the curves can be correlated indicating a causal link between paleodepths and sea level changes.

5.1.2 Upper Messinian to lower Pliocene (5.5 to 4.0 Ma)

The resolution during the latest Messinian (before 5.33 Ma) is poor, however, this interval seems to coincide with a negative excursion in the stack of δ^{18}O isotope curve and with the initiation of the deepening trend in the paleodepth curve (Fig. 3a). This
correspondence indicates that a transgressive event may have taken place just before the Miocene/Pliocene as suggested by McKenzie et al. (1999). Duggen et al. (2003) suggested that westward migrating late Miocene uplift might have induced slumping from the Gibraltar arc into the Atlantic abyssal plain which, coupled with faulting, may have allowed a new marine gateway to open at the Strait of Gibraltar. More recently Van der Laan et al. (2006) observed that at the Louljia-A section in Tunisia the Miocene/Pliocene boundary is characterized by a decrease in the benthic δ^{18}O correlated to an obliquity-controlled cycle between TG7 and TG5 and not to TG5 itself, as suggested by Shackleton et al. (1995) and McKenzie et al. (1999). Between 5.332 and 5.2 Ma the stack of δ^{18}O isotope curve and the paleodepth curve show opposite trends supporting the hypothesis of a stronger influence of the tectonic signal with only minor influence of eustasy.

Correspondence between the two curves with enhanced deepening from 170 m to over 300 m is observed between 5.2 and 5.1 Ma. This interval coincides with the re-establishment of efficient connection between the Atlantic and the Mediterranean (Spezzaferri et al., 1998).

The overall trends of the two curves do not coincide up to 4.0 Ma. This may reflect the rapid break-up and subsidence produced by the incipient collision and extensional faulting of the seamount (Robertson, 1996; Robertson, 1998b) coupled with a slight influence of sea-level changes.

5.1.3 Middle to late Pliocene (4.0 to 2.5 Ma)

The paleodepth curve shows small variations in amplitude throughout this interval. The composite oxygen isotope curve displays larger fluctuations but the overall trend is similar to that of paleodepth (Fig. 3b). A few positive and negative excursions can be compared in the two curves.

The continued erosion of the Gibraltar Soil resulted in the stabilisation of efficient connections between the Atlantic Ocean and the Mediterranean Sea after 5.1 Ma. A complete reorganisation and stabilisation of the circulation patterns took place in the
Atlantic Ocean after the final closure of the Isthmus of Panama at approximately 4.6 Ma (e.g., Haug and Tiedemann, 1998; Kron et al., 2000).

Efficient connections and the new and more stable current system may have resulted in a relatively strong influence of sea-level changes in the Mediterranean Basin from 4.52 Ma to 1.75 Ma. The similar overall trend of the paleodepth and composite oxygen isotope curve and the lacking of abrupt depth changes may also reflect a reduced tectonic activity during this interval.

5.1.4 Pleistocene to Holocene (2.5 Ma to present)

The Pliocene-Pleistocene transition experienced renewed tectonic disturbance and intensified subsidence leading to tectonic collapse of the seamount. Robertson et al. (1998) related the 4.9 ka hiatus to the deformation of the Eratosthenes plateau area, probably produced by block faulting of the underlying pre-Pliocene-Pleistocene rocks. These authors suggested synchronicity between the Eratosthenes collapse and the main uplift of Cyprus, which took place after the late Pliocene. Indeed, the paleodepth curve shows a deepening of about 2110 m at 1.5 Ma (Fig. 3c) indicating that this variation may be related to a major tectonic event such as the collapse of the structure triggered by the uplift of Cyprus rather than a sea level change. In the Pleistocene a coupled influence of sea-level changes superimposed to tectonic collapse of the structure can be observed. The oxygen isotope record of Kroon et al. (1998) obtained for ODP Hole 967A from approximately 0.26 and 3.99 Ma also shows an upward trend toward more positive values confirming, at least in this interval, a partial influence of sea level variation.

6 Conclusions

The paleodepth history of the Eratosthenes Seamount as revealed by the use of the transfer function and by the comparison with global benthic $\delta^{18}O$, is mainly dominated
by the tectonic events and subsidence of the seamount linked to the uplift of Cyprus. However, it is clear that minor shifts in the paleodepth of this location are causally linked to global sea level changes that played a role in the deepening of the Seamount from the Miocene/Pliocene boundary to the present. Therefore, this study suggests that marginal seas record global sea-level changes, and they can be identified even in geological settings where tectonic events are dominant.

Acknowledgements. Thanks to the Ocean Drilling Program for inviting SS on board Leg 160 and providing samples for this study. S. Spezzaferri would like to thank the shipboard party for scientific discussion during and after the cruise and to F. Rögl (Vienna) for suggestions about depth ranges of foraminifera. H. Hohenegger (Vienna) is acknowledged for the development of the method for paleodepth estimations.

References

Robertson, A. H. F.: Late Miocene paleoenvironments and tectonic setting of the southern

Van der Laan, E., Snel, E., de Kaenel, E., Hilgen, F. J., and Krijgsman, W.: No major deglacia-

<table>
<thead>
<tr>
<th>Species</th>
<th>Minimum Depth (mbsl)</th>
<th>Maximum Depth (mbsl)</th>
<th>Species</th>
<th>Minimum Depth (mbsl)</th>
<th>Maximum Depth (mbsl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia tepida</td>
<td>2</td>
<td>80</td>
<td>Melonis pompilioides</td>
<td>50</td>
<td>4800</td>
</tr>
<tr>
<td>Anomalinoidea helicinum</td>
<td>100</td>
<td>1000</td>
<td>Miliolinella subrotunda</td>
<td>30</td>
<td>4500</td>
</tr>
<tr>
<td>Anomalinoidea minimum</td>
<td>515</td>
<td>4000</td>
<td>Nonion commune</td>
<td>60</td>
<td>2000</td>
</tr>
<tr>
<td>Articulina tubulosa</td>
<td>1300</td>
<td>5000</td>
<td>Oolina faveolata</td>
<td>60</td>
<td>300</td>
</tr>
<tr>
<td>Astronion stelligerum</td>
<td>10</td>
<td>550</td>
<td>Oridorsalis stellatus</td>
<td>200</td>
<td>4000</td>
</tr>
<tr>
<td>Bigenerina nodosaria</td>
<td>60</td>
<td>3000</td>
<td>Oridorsalis umbonatus</td>
<td>200</td>
<td>4000</td>
</tr>
<tr>
<td>Bolivina dilatata</td>
<td>15</td>
<td>3000</td>
<td>Parrellaoides bradyi</td>
<td>450</td>
<td>3300</td>
</tr>
<tr>
<td>Bolivina punctata</td>
<td>50</td>
<td>2000</td>
<td>Parrellaoides robertsonianus</td>
<td>450</td>
<td>3300</td>
</tr>
<tr>
<td>Bolivina subsphinescens</td>
<td>25</td>
<td>2960</td>
<td>Planulina ariminensis</td>
<td>70</td>
<td>1200</td>
</tr>
<tr>
<td>Bulimina aculeata</td>
<td>5</td>
<td>4000</td>
<td>Pleurostomella alternans</td>
<td>20</td>
<td>1000</td>
</tr>
<tr>
<td>Chilostomella mediterranensis</td>
<td>500</td>
<td>1500</td>
<td>Pullenia bulboides</td>
<td>70</td>
<td>4000</td>
</tr>
<tr>
<td>Cibicidoides italicus</td>
<td>100</td>
<td>2000</td>
<td>Pullenia osloensis</td>
<td>70</td>
<td>4000</td>
</tr>
<tr>
<td>Cibicidoides ornatus</td>
<td>20</td>
<td>4000</td>
<td>Pullenia quadriloculata</td>
<td>70</td>
<td>4000</td>
</tr>
<tr>
<td>Cibicidoides pachyderma</td>
<td>70</td>
<td>4000</td>
<td>Pullenia quinqueloba</td>
<td>70</td>
<td>4000</td>
</tr>
<tr>
<td>Cibicidoides ungerianus</td>
<td>50</td>
<td>4000</td>
<td>Pyrgo murrhina</td>
<td>500</td>
<td>5000</td>
</tr>
<tr>
<td>Criobuliminina serpens</td>
<td>100</td>
<td>1000</td>
<td>Quinqueloculina bicarinata</td>
<td>20</td>
<td>3000</td>
</tr>
<tr>
<td>Dentalina leguminiformis</td>
<td>13</td>
<td>1000</td>
<td>Quinqueloculina laevigata</td>
<td>3</td>
<td>200</td>
</tr>
<tr>
<td>Eggereilla brady</td>
<td>100</td>
<td>4000</td>
<td>Quinqueloculina viennensis</td>
<td>3</td>
<td>200</td>
</tr>
<tr>
<td>Elphidium spp.</td>
<td>5</td>
<td>100</td>
<td>Sigmoinita tenuis</td>
<td>70</td>
<td>4000</td>
</tr>
<tr>
<td>Fissurina longirostris</td>
<td>50</td>
<td>1700</td>
<td>Sigmoides schlumbergeri</td>
<td>50</td>
<td>3000</td>
</tr>
<tr>
<td>Globocassidulina subglobosa</td>
<td>50</td>
<td>4000</td>
<td>Siphonina reticulata</td>
<td>55</td>
<td>1500</td>
</tr>
<tr>
<td>Gyroidina neosolidani</td>
<td>100</td>
<td>5000</td>
<td>Siphonodosaria hispida</td>
<td>100</td>
<td>2500</td>
</tr>
<tr>
<td>Gyroidinoides altiformis</td>
<td>100</td>
<td>4000</td>
<td>Sphaeroidina bulloides</td>
<td>25</td>
<td>4500</td>
</tr>
<tr>
<td>Gyroidinoides laevigatus</td>
<td>100</td>
<td>3000</td>
<td>Stainforthia complanata</td>
<td>16</td>
<td>500</td>
</tr>
<tr>
<td>Hyalinea baltica</td>
<td>60</td>
<td>4000</td>
<td>Stilostomella antilea</td>
<td>100</td>
<td>2500</td>
</tr>
<tr>
<td>Karreriella bradyi</td>
<td>130</td>
<td>2000</td>
<td>Stilostomella monilis</td>
<td>100</td>
<td>2500</td>
</tr>
<tr>
<td>Lagena clavata</td>
<td>30</td>
<td>500</td>
<td>Triloculina trasiculata</td>
<td>62</td>
<td>4300</td>
</tr>
<tr>
<td>Lenticulina cultrata</td>
<td>50</td>
<td>4500</td>
<td>Uvigeria rutila</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>Lenticulina gibba</td>
<td>50</td>
<td>4500</td>
<td>Uvigeria peregrina</td>
<td>100</td>
<td>1500</td>
</tr>
<tr>
<td>Lenticulina inornata</td>
<td>50</td>
<td>3500</td>
<td>Uvigerina pymaea</td>
<td>100</td>
<td>2500</td>
</tr>
<tr>
<td>Lenticulina rotulata</td>
<td>50</td>
<td>3500</td>
<td>Uvigerina spinosa</td>
<td>600</td>
<td>4000</td>
</tr>
<tr>
<td>Lobatula lobatula</td>
<td>5</td>
<td>120</td>
<td>Uvigerina striata</td>
<td>100</td>
<td>1500</td>
</tr>
<tr>
<td>Marginulina sp.</td>
<td>50</td>
<td>4000</td>
<td>Valvulineria marmorea</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Martinottiella communis</td>
<td>100</td>
<td>3000</td>
<td>Vulvulinella pennatula</td>
<td>500</td>
<td>1300</td>
</tr>
<tr>
<td>Martinottiella perparva</td>
<td>100</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Location map of ODP Hole 967A.
Fig. 2. (a) confidence interval of water depth for each sample, (b) paleodepth curve, (c) stack of benthic δ¹⁸O records (Lisieki and Raymo, 2005) and the paleodepth curve. Horizontal bars represent the bioevents listed in Figs. 3a–c.
Fig. 3.
Fig. 3. (a) Comparison between the stack of benthic δ^{18}O records (Lisieki and Raymo, 2005) and paleodepth curves from 5.5 Ma to 4.0 Ma. 1 = 5.332 Ma re-establishment of open marine conditions; 2 = 5.29 Ma base of *Sphaeroidinellopsis* acme; 3 = top of *Sphaeroidinellopsis* acme; 5.17 = First Common Occurrence (FCO) of *Globorotalia margaritae*; 5 = 5.00 Ma; 6 = 4.52 First Occurrence (FO) of *Globorotalia punculata*. (b) Comparison between the composite oxygen isotope and the paleodepth curves from 4.00 Ma to 2.5 Ma. 7 = 3.94 Ma Last Common Occurrence of *Globorotalia margaritae*; 8 = 3.57 Ma LO of *G. punculata*; 9 = 3.22 Ma LO *Sphaeroidinellopsis*. (c) Comparison between the composite oxygen isotope and paleodepth curve for the Pleistocene-Holocene from 2.50 Ma to the Present. 10 = 2.45 Ma LO of *Globorotalia bononiensis*; 11 = 1.75 Ma LO *Gephyrocapsa oceanica*; 12 = 1.5 Ma FO *Gephyrocapsa* spp. 13 = 1.25 LO *Gephyrocapsa* spp. >5.5 μm; 14 = 0.99 Ma = FO of Gephyrocapsa sp.3; 15 = 0.46 Ma = LO *Pseudohemiliania lacunose*; 16 = 0.26 FO *Emiliania huxleii*. Ages of planktonic foraminiferal and calcareous nannofossils bioevents are astronomically tuned (Emeis et al., 1996; Di Stefano et al., 1996; Sprovieri et al. 1998).